Competing effects of rare gas atoms in matrix isolation spectroscopy: a case study of vibrational shift of BeO in Xe and Ar matrices.

نویسندگان

  • Akira Nakayama
  • Keisuke Niimi
  • Yuriko Ono
  • Tetsuya Taketsugu
چکیده

We investigate the vibrational shift of beryllium oxide (BeO) in Xe matrix as well as in Ar matrix environments by mixed quantum-classical simulation and examine the origin of spectral shift in details. BeO is known to form strong chemical complex with single rare gas atom, and it is predicted from the gas phase calculations that vibrational frequencies are blueshifted by 78 cm(-1) and 80 cm(-1) upon formation of XeBeO and ArBeO, respectively. When the effects of other surrounding rare gas atoms are included by Monte Carlo simulations, it is found that the vibrational frequencies are redshifted by 21 cm(-1) and 8 cm(-1) from the isolated XeBeO and ArBeO complexes, respectively. The vibrational shift of XeBeO in Ar matrix is also calculated and compared with experimental data. In all simulations examined in this paper, the calculated vibrational frequency shifts from the isolated BeO molecule are in reasonable agreement with experimental values. The spectral shift due to the rare-gas-complex formation of RgBeO (Rg = Xe or Ar) is not negligible as seen in the previous studies, but it is shown in this paper that the effects of other surrounding rare gas atoms should be carefully taken into account for quantitative description of the spectral shifts and that these two effects are competing in vibrational spectroscopy of BeO in matrix environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of second virial coefficients for rare gases in thermodynamic views

Using the Gaussian 2003 software and MP2/ 6–311 ++ G** method for He: He, Ne:Ne andMP2/6-31G method for Ar: Ar, Kr: Kr and HF/STO-3G method for Xe: Xe, the optimizedinteraction energies between two like atoms of rare gases (He, Ne, Ar, Kr and Xe) as a functionof the distances between the centers of two considered atoms were evaluated and the resultswere interpreted according to the Lennard – Jo...

متن کامل

تاثیر مخلوط گاز He-Xe بر بهره تحریک در صفحه نمایش پلاسمایی و مقایسه آن بامخلوط گاز Ne-Xe وNe-Xe-Ar

The image in a plasma display panel is formed when a mixture of several rare gases are activated and discharged .and Xe is excited. Because of limitation as to the increase Xe gas, the luminous efficiency of PDP is lower than that of cathode ray tube (CRT). In this paper we show by numerical simulation that the excitation efficiency in He-Xe mixture is lower than that in a Ne-Xe ...

متن کامل

The absorption and excitation spectroscopy of matrix-isolated atomic manganese: sites of isolation in the solid rare gases.

This study collects information from absorption and luminescence excitation spectra recorded for Mn atoms isolated in the solid rare gases Ar, Kr, and Xe and presents an analysis of the site occupancy, based on the polarizabilities of the rare gases and the observed spectral shifts. Two thermally stable sites of isolation exist for atomic Mn in solid Ar and Kr, while a single thermally stable s...

متن کامل

HXeCCH in Ar and Kr matrices.

HXeCCH molecule is prepared in Ar and Kr matrices and characterized by IR absorption spectroscopy. The experiments show that HXeCCH can be made in another host than the polarizable Xe environment. The H-Xe stretching absorption of HXeCCH in Ar and Kr is blueshifted from the value measured in solid Xe. The maximum blueshifts are +44.9 and +32.3 cm(-1) in Ar and Kr, respectively, indicating stabi...

متن کامل

Matrix site effects on vibrational frequencies of HXeCCH, HXeBr, and HXeI: a hybrid quantum-classical simulation.

The matrix shifts of the H-Xe stretching frequency of noble-gas hydrides, HXeCCH, HXeBr, and HXeI in various noble-gas matrices (in Ne, Ar, Kr, and Xe matrices) are investigated via the hybrid quantum-classical simulations. The order of the H-Xe stretching frequencies is found to be ν(gas) < ν(Ne) < ν(Xe) < ν(Kr) < ν(Ar) for HXeCCH and HXeBr, while it is ν(gas) < ν(Ne) < ν(Xe) < ν(Ar) < ν(Kr) f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 136 5  شماره 

صفحات  -

تاریخ انتشار 2012